Skip to content

M. Rojas, 2012

Analysis of forearm muscles activity by means of new protocols of multichannel EMG signal recording and processing

By Mónica Rojas Martínez

Directed by Mañanas Villanueva, Miguel Ángel

2012.12.20

Summary

Voluntary movements are achieved by the contraction of skeletal muscles controlled by the Central and Peripheral Nervous system. The contraction is initiated by the release of a neurotransmitter that promotes a reaction in the walls of the muscular fiber, producing a biopotential known as Motor Unit Action Potential (MUAP) that travels from the neuromuscular junction to the tendons. The surface electromyographic signal records the continuous activation of such potentials over the surface of the skin and constitutes a valuable tool for the diagnosis, monitoring and clinical research of muscular disorders as well as to infer motion intention not only regarding the direction of the movement but also its power.

In the study of diseases of the neuromuscular system it is necessary to analyze the level of activity, the capacity of production of strength, the load-sharing between muscles and the probably predisposition to muscular fatigue, all of them associated with physiological factors determining the resultant muscular contraction. Moreover, the use of electrode arrays facilitate the investigation of the peripheral properties of the active Motor Units, the anatomical characteristics of the muscle and the spatial changes induced in their activation of as product of type of movement or power of the contraction.

The main objective of this thesis was the design and implementation of experimental protocols, and algorithms to extract information from multichannel sEMG signals in 1 and 2 dimensions of the space. Such information was interpreted and related to pathological events associated to two upper-limb conditions: Lateral Epicondylitis and Repetitive Strain Injury. It was also used to identify the direction of movement and contraction strength which could be useful in applications concerning the use of biofeedback from EMG like in robotic-aided therapies and computer-based rehabilitation training.

In summary, the most relevant contributions are:

  • The definition of experimental protocols intended to find optimal regions for the recording of sEMG signals
  • The definition of indices associated to the co- activation of different muscles. §The detection of low-quality signals in multichannel sEMG recordings
  • The selection of the most relevant EMG channels for the analysis
  • The extraction of a set of features that led to high classification accuracy in the identification of tasks

The experimental protocols and the proposed indices allowed establishing that imbalances between extrinsic muscles of the forearm could play a key role in the pathophysiology of lateral epicondylalgia. Results were consistent in different types of motor task and may define an assessment framework for the monitoring and evaluation of patients during rehabilitation programs.

On the other hand, it was found that features associated with the spatial distribution of the MUAPs improve the accuracy of the identification of motion intention. What is more, features extracted from high density EMG recordings are more robust not only because it implies contact redundancy but also because it allows the tracking of (task changing) skin surface areas where EMG amplitude is maximal and a better estimation of muscle activity by the proper selection of the most significant channels.