Report Session 1: Introduction of Respiratory System Student 1 name: Student 2 name:

Questionnaire

Please, after a carefully reading of given references, answer the following questions:

- (1) How gas exchange is regulated?
- (2) Which muscles are implicated in the breathing process and which is their function?
- (3) What is the activity of diaphragm during active expiration?
- (4) Where is located respiratory control center anatomically?
- (5) Which volumes are described in the documentation and what are the relationships between them?
- (6) Why does total ventilation increase during exercise?
- (7) Which are normal values of P_aCO_2 , P_aO_2 , breathing frequency and tidal volume at rest?

Students have to deliver the short answers via Intranet before starting next Lab Session.

Report Session 2:	Respiratory System Response under Ventilatory Stimuli
Student 1 name:	
Student 2 name:	

Variable	Otis' equation	Mead's equation	Widdicombe's equation
$V_{T}(l)$			
${ m V_{E}}$ (l/min)			
f (breaths/min)			
Q (l/min)			
PaO_2 (torr)			
$PaCO_2$ (torr)			

Table 2.1: Results of simulation in resting conditions with three different equations to calculate the respiratory frequency

Comments:

Variable	Sea Level		2500 (m) of	f Altitude
	Rest	Rest Exerc		Exerc
V _T (l)				
$V_{E}\left(l/min ight)$				
f (breaths/min)				
Q (l/min)				
PaO_2 (torr)				
$PaCO_2$ (torr)				

Table 2.2: Results of exercise simulation at sea level and at 2500 m of altitude

•			
Comments	at sea	level	•

Comments at high altitude:

Stimulus Level

Variable	0	1	2	3	4
$V_{T}\left(I\right)$					
$V_{E}\left(l/min ight)$					
f (breaths/min)					
Q (l/min)					
PaO ₂ (torr)					
PaCO ₂ (torr)					

Table 2.3: Results of incremental hypercapnia simulation with Otis' equation to calculate respiratory frequency

Comments:

EXERCISE 4

Stimulus Level

Variable	0	1	2	3	4
f (breaths/min) for Mead					
f (breaths/min)for Widdicombe					
V _T (l) for Mead					
$V_{T}\left(l\right)$ for Widdicombe					
$V_{\rm E}$ (l/min) for Mead					
V _E (l/min) for Widdicombe					

Table 2.4: Results of incremental hypercapnia simulation with Mead and Widdicombe's equation

XERCISE 5	
Comments:	

Equation	Prediction Error (%)			
	V_{T}	f		
Otis				
Mead				
Widdicombe				

Table 2.5: Prediction error during hypercapnia with different equations to calculate respiratory frequency

Comments:

Students have to deliver all the results (Tables, Plots and Comments) via Intranet before starting next Lab Session.

Report Session 3:	Respiratory Diseases based on Mechanical Loads
Student 1 name:	
Student 2 name:	

Variable	Sea I	Sea Level		Altitude
	R=2.6	R=2.6 R=3.6		R=3.6
V _T (1)				
V _E (l/min)				
f (breaths/min)				
Q (l/min)				
PaO_2 (torr)				
PaCO ₂ (torr)			<u> </u>	

Table 3.1: Results of variation of airway resistance at sea level and at high altitude

EXERCISE 2

Variable	Sea Level		2500 (m) of	Altitude
	E=10	E=20	E=10	E=20
V _T (l)				
V_{E} (l/min)				
f (breaths/min)				
Q (l/min)				
PaO_2 (torr)				
PaCO ₂ (torr)				

Table 3.2: Results of variation of elastance at sea level and at high altitude

Stimulus Level

Variable	0.2	0.4	0.6	0.8	1
V_{T} (l)					
V _E (l/min)					
f (breaths/min)					
Q (l/min)					
PaO_2 (torr)					
PaCO ₂ (torr)					

Table 3.3: Results of incremental exercise simulation in a normal subject

EXERCISE 4

Stimulus Level

Variable	0.2	0.4	0.6	0.8	1
$V_{T}\left(l\right)$					
V _E (l/min)					
f (breaths/min)					
Q (l/min)					
PaO_2 (torr)					
PaCO ₂ (torr)					

Table 3.4: Results of incremental exercise simulation in a restrictive patient with $E=20 \text{ cmH}_2\text{O}/l$

Stimulus Level

Variable	0.2	0.4	0.6	0.8	1
V _T (l)					
V _E (l/min)					
f (breaths/min)					
Q (l/min)					
PaO ₂ (torr)					
PaCO ₂ (torr)					

Table 3.5: Results of incremental exercise simulation in a restrictive patient with E=30 cm H_2O/l

EXERCISE 6	
Settling time:	
EXERCISE 7	
Comments:	

Elastance	Prediction Error (%)		
(cmH ₂ O/l)	V_{T}	f	
10			
20			
30			

Table 3.6: Prediction error in exercise with different values of elastance

Questionnaire

Please, answer the following questions from the results obtained in this Lab Session:

- (1) Obtain conclusions from the data in table 3.1. How does an increase of airway resistance effect in the respiratory pattern?
- (2) Obtain conclusions from the data in table 3.1. How does an increase of respiratory elastance effect in the respiratory pattern?
- (3) Which is the effect of hypoxia in patients with higher respiratory elastance?
- (4) Which is the effect of exercise in patients with higher respiratory elastance?
- (5) Obtain conclusions from Figure 3.1 and table 3.1. Experimental data from a restrictive patient could be predicted by RespiLab using higher values of elastance? Which elastance value obtains the best prediction of respiratory system response during exercise for the selected restrictive patient with?
- (6) Are the graphs of $V_T vs V_E$ and $F vs V_E$ coherent with the prediction error you found?

Students have to deliver all the results (Tables and Plots) and answers via Intranet by next week.